The migration behaviour of DNA replicative intermediates containing an internal bubble analyzed by two-dimensional agarose gel electrophoresis.
نویسندگان
چکیده
Initiation of DNA replication in higher eukaryotes is still a matter of controversy. Some evidence suggests it occurs at specific sites. Data obtained using two-dimensional (2D) agarose gel electrophoresis, however, led to the notion that it may occur at random in broad zones. This hypothesis is primarily based on the observation that several contiguous DNA fragments generate a mixture of the so-called 'bubble' and 'simple Y' patterns in Neutral/neutral 2D gels. The interpretation that this mixture of hybridisation patterns is indicative for random initiation of DNA synthesis relies on the assumption that replicative intermediates (RIs) containing an internal bubble where initiation occurred at different relative positions, generate comigrating signals. The latter, however, is still to be proven. We investigated this problem by analysing together, in the same 2D gel, populations of pBR322 RIs that were digested with different restriction endonucleases that cut the monomer only once at different locations. DNA synthesis begins at a specific site in pBR322 and progresses in a uni-directional manner. Thus, the main difference between these sets of RIs was the relative position of the origin. The results obtained clearly showed that populations of RIs containing an internal bubble where initiation occurred at different relative positions do not generate signals that co-migrate all-the-way in 2D gels. Despite this observation, however, our results support the notion that random initiation is indeed responsible for the peculiar 'bubble' signal observed in the case of several metazoan eukaryotes.
منابع مشابه
Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism.
The established strand-displacement model for mammalian mitochondrial DNA (mtDNA) replication has recently been questioned in light of new data using two-dimensional (2D) agarose gel electrophoresis. It has been proposed that a synchronous, strand-coupled mode of replication occurs in tissues, thereby casting doubt on the general validity of the "orthodox," or strand-displacement model. We have...
متن کاملA computer model for the analysis of DNA replication intermediates by two-dimensional agarose gel electrophoresis.
We present a computer model to predict the patterns expected for the replication intermediates (RIs) of DNA fragments analyzed by neutral/neutral two-dimensional (2D) agarose gel electrophoresis. The model relies on the mode of replication (uni- or bi-directional), the electrophoretic mobility of linear DNA fragments and the retardation caused by the three-dimensional shape of non-linear molecu...
متن کاملKnotting dynamics during DNA replication.
The topology of plasmid DNA changes continuously as replication progresses. But the dynamics of the process remains to be fully understood. Knotted bubbles form when topo IV knots the daughter duplexes behind the fork in response to their degree of intertwining. Here, we show that knotted bubbles can form during unimpaired DNA replication, but they become more evident in partially replicated in...
متن کاملReplication fork reversal occurs spontaneously after digestion but is constrained in supercoiled domains.
Replication fork reversal was investigated in undigested and linearized replication intermediates of bacterial DNA plasmids containing a stalled fork. Two-dimensional agarose gel electrophoresis, a branch migration and extrusion assay, electron microscopy, and DNA-psoralen cross-linking were used to show that extensive replication fork reversal and extrusion of the nascent-nascent duplex occurs...
متن کاملTwo-dimensional intact mitochondrial DNA agarose electrophoresis reveals the structural complexity of the mammalian mitochondrial genome
The mitochondrial genome exists in numerous structural conformations, complicating the study of mitochondrial DNA (mtDNA) metabolism. Here, we describe the development of 2D intact mtDNA agarose gel electrophoresis (2D-IMAGE) for the separation and detection of approximately two-dozen distinct topoisomers. Although the major topoisomers were well conserved across many cell and tissue types, uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 21 23 شماره
صفحات -
تاریخ انتشار 1993